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Abstract. The use of energy functionals based on charge density as the basic variable is 
advocated for ob initio molecular dynamics. It is demonsmed that the constraint of positiviry 
of density can be incorporated easily by using the square root of the density for minimimion of 
the energy Rnctional. An od hoc prescription for including non-local pseudopotentials for plane 
wave based calculations is proposed and is shown to yield improved mule .  Applications are 
reported for equilibrium geometries of small finite systems, viz. dimers and trimers of simple 
metal atoms like Na and Mg, which represent a rather stringent test for approximate kinetic 
energy functionals involved in such calculations. 

1. Introduction 

First-principles density functional based molecular dynamics (DFMD), initiated by Car and 
Paninello (CP) [1,2], has become a powerful technique for ab initio investigations of a 
number of properties of clusters and extended systems 131. This technique, which unifies 
the conventional density functional theory (DFT) with classical molecular dynamics, views 
the problem as that of total energy minimization involving electronic and ionic degrees. 
of beedom. This is achieved via simulated annealing implemented through Lagrangian 
equations of motion, which are fictitious for electronic degrees of freedom and real for 
ionic coordinates. The method has also given impetus to the development of better and 
faster techniques for large-scale electronic structure calculations with fixed geometry, e.g. 
clusters involving a large number of atoms 141. The applications based on the CP formalism 
fall into two broad categories: 

(1) ab initio prediction of ground state properties like equilibrium geometry and 
(2) finite-temperature properties obtained via trajectories of the system moving on the 

Born-Oppenheimer (BO) surface. 

A majority of the applic2tions belong to the first category. In spite of a number 
of technical advances like accelerated algorithms involving a real space approach 151, 
preconditioned conjugate gradient minimization methods [6]  and analytically continued 
energy functionals 171, it is clear that the method becomes prohibitively expensive for 
large-scale calculations. Typically these algorithms scale as o ( N i N b )  where No is the 
number of orbitals and Nb is the number of basis functions, N:Nb being the dominant cost 
of orthogonalization of electronic orbitals. In addition, for simple metal systems, a tricky 
problem of charge sloshing [6] has also been noticed which limits the time step that can 
be used in dynamics. Recently, there have been a few attempts towards obtaining linear 
scaling, e.g. a non-orthogonal localized basis formulation [SI, finite-difference real space 
discretization coupled with the recursion method [9] and density matrix based formulation. 
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In the present work, following the Hohenbeq-Kohn theorem [ 10,111, we advocate a 
rather simple method in which the total energy functional is written in terms of density as 
the basic variable. Such an orbital free method (om) has been used by Pearson et al [U]. 
They have used this method for calculating equilibrium lattice separation. bulk modulus and 
vacancy formation energy of solid sodium. As pointed out in their work, the method scales 
linearly with the number of atoms iVa and is capable of treating large simulation time steps. 
The method has also been applied to the calculation of free energies of vacancies [ 131 and 
the ground state configuration of c-Si and WSi(lO0) surfaces [14,15]. The accuracy of 
this method hinges upon the correct description of the kinetic energy functional. Usually 
the kinetic energy functional is taken to be the Thomas-Fermi type with the appropriately 
scaled Weizsacker correction. This can be further improved by taking into account linear 
response properties, leading to the Perrot form [13]. However, there are a few points which 
must he critically examined. Firstly, the usual DFMD methods are implemented using first- 
principles pseudopotentials which are necessarily non-local. So far, the available orbital free 
formulation [12-15] uses local potentials only. Secondly, during the minimization process 
the positivity of the charge density p( r )  must be strictly maintained. Thirdly, the accuracy 
of the results, at least so far as the bond lengths are concerned, which are crucial for ground 
state geometries and other structural properties, should be thoroughly assessed. 

The present work is motivated by a desire to investigate these questions. This work 
includes the following. 

(1) We propose an ad hoc prescription for incorporating the non-local contribution of 
the pseudopotential, which is missing from the earlier work. 

(2) We use the square root of the density as the basic variable to incorporate the 
positivity constraint on density. This constraint is essential because during unconstrained 
minimization, the electronic charge density p ( r )  may become negative, especially since the 
kinetic energy functionals are approximate. Indeed, in some cases we have observed this 
phenomenon. 

(3) We present results of applications of this method to the equilibrium bond lengths of 
dimer and trimer systems. This would be a stringent test as compared to the applications 
to extended systems. 

We believe that a combination of density based orbital free MD and KohnSham (KS) 
orbital based MD may yield a cost effective way of performing geometry optimization 
for large clusters. This can be achieved by first obtaining approximate low-temperature 
structures by the present method which is O(N,) and then performing full MD or a fast 
quench. As the kinetic energy Functional improves, this way of geomeby optimization 
should turn out to be a computationally tractable alternative for large clusters consisting of 
more than few hundred atoms. It may also be used for investigating the thermodynamic 
properties of large-scale systems where the conventional methods may be prohibitive in 
terms of computer time. The method will be most useful For simple metal systems provided 
it yields acceptable bond lengths. It is hoped that this kind of work will give impetus to 
formulating better kinetic energy functionals. 

In the next section we give our formalism and computational details. In section 3 we 
present the results for Na2, Mg2 and Mg3 and compare them with full self-consistent KS 
calculations. 
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2. Formalism and computational details 

2.1. Total energy calculation 

The total energy of a system of Ne interacting electrons and N ,  atoms, according to the 
Hohenberg-Kohn theorem, can be uniquely expressed as a functional of the electron density 
p ( r )  under an extemal field due to the nuclear charges at coordinates R,. 

’ {.%)I = TIPI + Ex&I + E&l + E d P ,  ( % } I  + Eii(IRn1) (1) 

where 

(2) 
V p ( r ) .  Vp(r)d3r s 8 

3 
T [ p ]  = 10(3~2)2’3 p ( ~ ) ” ~ d ~ r  .t - 

is the kinetic energy functional. The first term in this functional is the Thomas-Fermi term, 
exact in the l i t  of homogeneous density, and the second is the gradient correction due to 
Weizsacker. It has been pointed out that instead of A = 1 which is the original Weizsacker 
value, A = $ and other empirical values turn out to yield better results [16]. The second 
and the third term in (1) represent, respectively, the exchange-correlation energy in the 
usual local density approximation and the electron-electron Coulomb interaction energy. 
The next term 

E d p ,  IRJI = V(r)p(r)d3r (3) s 
is the electron-ion interaction where V(T) is the extemal potential and the last term in 
equation (l), Eii, denotes the ion-ion interaction energy. 

The extemal potential is usually taken to be a convenient pseudopotential, and, in 
general, it is non-local. Let us recall that in the standard pseudopotential formulation [17] 
the non-local contribution to the electron-ion energy for an electron in the state Y (T) is 
given by 

E d V I  = W ) V p s , i ( ~ ) h W r )  d3r (4) s 

s 
where Vps.l(r) is the 1-dependent part of the pseudopotential and $1 is the angular 
momentum projection operator. In analogy, we suggest the following expression for non- 
local contribution to the total energy in terms of the square root of the density. Let 

E d b l =  B(r)Vps. , (~)ab(~)d3r  (5) 

where 

C(T) = m. , ~ ’ (6) 

The exchangecorrelation energy is calculated using the Ceperley-Alder exchange potential 
as interpolated by Perdew and Zunger [IS]. Although in the present work we use a simple 
kinetic energy (KE) functional, improved KE functionals useful at least for simple metals 
have been reported. For example, Smar@assi and Madden [ 131 have investigated a family of 
KE functionals, with applications to Na and AI, giving accuracy comparable to that obtained 
by the KS method. 
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2.2. Dynamics 

Typically the MD procedure proceeds via two steps. The first step is to obtain the ground 
state energy E and density p ( r )  for a fixed geometry, which could be done via CP dynamics 
performed on electronic degrees of freedom only. However, gradient based minimization 
techniques have also been found to be effective in locating the minimum of general functions 
and are known to have fast convergence 1191. We have applied the conjugate gradient 
(CG) algorithm [ZGZZ] for minimizing the total energy functional for a fixed geometry 
configuration. In the standard CO algorithm the new charge density for the (k+ 1)th iteration 
is constructed by linearly combining the charge density p K ( r )  and conjugate direction dk(r )  
for the kth iteration as 

pk+'(r) = p k ( r )  + orkdK(r) (7) 

where the search parameter ork > 0 is chosen to minimize the functional E'@) = 
E [ p K  f o r d k ]  for a given pK and dk. It is well known that subsequent minimizations along 
the CG dirrctions tend to introduce errors in the calculation due to finite precision. We have 
found it advantageous to restart the CG search after every few iterations with a steepest- 
descent direction. To incorporate the positivity constraint on density into the minimization 
procedure, we vary ?(r) (equation (6)) rather than p(r) ,  with equation (7) re-expressed in 
terms of F(T). 

After performing minimization of charge density for fixed ionic positions to a desired 
degree of convergence, trajectories of ions and fictitious electron dynamics are simulated 
using Lagrange's equations of motion. To simulate the motion on the BO surface, we start 
with the Lagrangian defined by 

(8) L = Ke + Ka - ELF, (%I1 
where 

Ke = p s &T) d3r (9) 

and 

are the kinetic energy of electrons and the kinetic energy of the ions placed at {Rn} 
respectively. The dot denotes the time derivative and p and M, are respectively the fictitious 
mass of electrons and the mass of the nth atom. The fictitious mass of the electrons p is a 
parameter to model the classical motion of density analogous to atomic motion. The above 
Lagrangian leads to the following equations of motion: 

for electrons and ions respectively, subject to the constraint 
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The dynamics being conservative the grand total energy EGT is a conserved quantity of 
motion. Thus, 

EGT = E. + & + E [ b ,  {RdI (14) 

is the sum of the fictitious kinetic energy of electrons, kinetic energy of ions and total energy 
of electrons. The equations of motion (11) and (12) are solved by discretizing time with a 
finite time step Af using the Verlet algorithm [l]. It may be noted that large time steps are 
required for large simulation times which are essential for obtaining good, thermodynamic 
averages. However, there are two limiting factors. the first being numerical accuracy due to 
the Verlet algorithm (second order in At) and the second due to the coupled nature of the 
electron-ion system. In the context of o m  the stability of CP dynamics has been discussed 
[12]. The grand total energy is the parameter used to monitor and judge the quality of D m  
numerical simulations. The greatest advantage of using density as the variational parameter 
is that the constraint of orthonogonality of wavefunctions can be done away with. This 
saves a considerable amount of computation, thus making the dynamics fast. An altemative 
to the CP algorithm for dynamical simulations of ionic systems has been suggested by Payne 
et al [6]. In this method the electronic degrees of freedom are relaxed to the instantaneous 
ground state at the new ionic coordinates. We have used this CGMD procedure along with 
the density predictor method [3] for dynamical simulations. The density in successive time 
steps is constructed using the fmt-order density predictor as 

where ,j' denotes a trial density which is then used for further minimization. This reduces 
the number of CG minimization steps by a factor of two (typically two or three CG steps 
have been found to be sufficient for convergence). 

The calculations for Na2, Mg2 and Mg3 have been performed on a periodically repeated 
unit cell of length 35 au with a 48 x 48 x 48 mesh. The square root charge density is 
expanded in terms of plane waves as 

CG dynamics involves the calculation of the first derivative of energies with respect to 
F(T).  The electrostatic energy, the gradient correction to the kinetic energy and the non-local 
energy and their respective derivatives were calculated in Fourier space and then transformed 
to T space. The MD calculations were performed in the conventional CP technique and the 
conjugate gradient CP technique. Local calculations were conveniently performed in the T 

space. The energy cut-off used for local calculations was 30 Rydbergs and that for non- 
local energy calculations 10 Rydbergs. The dimer dynamics with the conjugate gmdient 
CP technique is quite stable with one CG step after adjusting the density by the predictor 
method for a time step of 10 au and f i  = 600 au. Calculations with a time step of 50 au 
required four CG steps for the trajectories to remain on the BO surface. 

3.~ Results and discussion 

In this section, we present our results for the bond lengths of Na2, MgZ, Mg3 and compare 
them with those obtained via conventional ab initio MD. We have performed fixed geometry 
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minimization as well as simulated annealing MD. All the results presented here are obtained 
with energy convergence up to 

The pseudopotentials used in the calculation are generated using the scheme of Bachelet 
er a1 [23]. In practice, these pseudopotentials are decomposed into two parts as 

for total energy minimization. 

In our calculations, the local potential is taken as the sum of the first term which is 1 
independent and the 1 = 0 contribution from the second term. For the non-local calculation 
the full I-dependent potential is used. Identical potentials are used for the KS calculations. 
It may be noted that for simple metal atoms considered here the effect of non-locality is 
small and semi-empirical local potentials [12,24] have been used successfully. However, 
for other systems the full non-local contribution is significant. 

Table 1. Equilibrium bond length obtained via ow local formulation (column 2) and om non- 
local formulation (column 3) compared wilb those of the KS self-consislent method (column 4) 
(all values in atomic units). 

System OFM local om non-local KS non-local 

Naz 5.34 5.62 5.68 
Mg3 5.35 6.32 6.26 
Mg3 5.44 5.88 5.82 

Table 1 shows the comparison of bond lengths via the om with local and non-local 
pseudopotentials and the KS self-consistent formulation. It is gratifying to note that the 
maximum error in the bond length with the non-local pseudopotential is of the order of 2%. 
It can be seen that non-locality improves the bond lengths considerably. However, this is 
at the cost of additional operations which go as N. x Nb. 

In order to understand the total energy behaviour using OFM and also the effect of non- 
locality, we have plotted the total energy of Mg2 as a function of interatomic separation 
in figure 1. The curve labelled A corresponds to the KS local results, B corresponds to 
the KS non-local and C and D represent the corresponding results obtained by the present 
method. The energy and the distances are measured with respect to the equilibrium quantities 
obtained by respective calculations. It can be seen that although the magnitude of changes 
is rather small, the effect of non-locality is somewhat drastic in the om. This leads to a 
faster approach to equilibrium with the inclusion of non-locality. However, it also shows 
a worrisome feature, namely, the effect of non-locality in the OFM is considerably more as 
compared to the full KS calculation. This indicates that although non-locality improves the 
equilibrium separation the vibrational frequencies would be significantly different from the 
KS results. Clearly this is an undesirable feature. To assess the quality of the charge density 
obtained via the om, we have plotted it in figure 2 along with that due to the KS method. As 
can be seen, there is an overall agreement in the nature of the density curve. The OF density 
is overestimated in the region away from the atomic site and underestimated at the atomic 
site. This is understandable due to the inexact formulation of kinetic energy functionals. 
However, the long-range behaviour is identical in the two cases. The variation of total 
energy E (continuous line) and Ecr (dashed line) with a time step of 10 au during the free 
MD simulation run for Mgz is shown in figure 3, indicating stable conservative dynamics. 
Identical behaviour has been seen with a higher time step Ai - 50 au. The behaviour of the 
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0 

4U35 -0.025 -0.015 4.W 0.005 0.011 0.025 0.035 
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Figure 1. The behaviour of total energy of Mg2 near equilibrium separation as a function of 
distance. All distvlces and energies ax measured with respect 10 their corresponding equilibrium 
values. Curve A. KS local. B KS non-lod, C: OFM local, D: om non-local. 

0.4 

0.3 

0 

c 0.2 * 
0.1 

n 

Figure 2. Charge density r 2 p ( r )  along the symmetry axis for M&. The dxhed line corresponds 
to the KS result and the continuous line represents the o m  result. 

total electronic energy is periodic, with the minimum occurring at the equilibrium separation 
in each oscillation. It may be mentioned that the Lagrangian dynamics (CP technique) is 
much faster and our results for a time step At - 20 au are more or less identical to the CG 
dynamics results. 
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Figure 3. Time evolution of the total energy E (solid line) and gnnd total energy EGT (dashed 
line) of Ma during a 1000-step free om MD N" with B time s t ep  of 10 3". 

4. Conclusion 

In this work we have presented a fast but approximate density based ab initio MD and 
demonstrated that the bond lengths for dimers and trimers are obtained to within an accuracy 
of 2% for non-local and - 10% for local calculations. We have shown that the CG technique 
in conjugation with a simple density predictor method allows us to use large time steps for 
dynamics. The fixed-geometry minimization using CG can be obtained to a high degree of 
accuracy within less than 200 iterations. Yet another alternative to incorporate the positivity 
constraint is by constraining variation of density during the minimization (equation (7)) 
by restricting ak to an appropriate range 1221. Our preliminary investigation indicates that 
this technique is much faster compared to the square root density minimization. This is 
understandable, because it is well known that CG works best for quadratic and near-quadratic 
functionals, and the degree of non-linearity of the energy functional is reduced if expressed 
in terms of p rather than 6. 

The present calculations were performed on an iSG0 based workstation giving the 
performance - 5 MFLOPS. One CP iteration for Mg? using the OFM took a few seconds 
whereas the KS calculation took about GO s. Since the OFM algorithm scales linearly with 
the system size it should be possible to handle a few hundred atoms per unit cell systems on 
standard workstations (- 30-40 MFLOPS). We believe the present results on small systems to 
be a stringent test and the method to be a viable altemative for calculating finite-temperature 
properties of systems involving a large number of atoms. 
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